Unit one: Matrices

1.1 Basic Definitions:
A matrix is a rectangular array of numbers (or functions) enclosed in brackets. These

numbers (or functions) are called the entries (or sometimes the elements) of the matrix.
For example, axs B M

0.3 I ~D
’ da; Az2 a3
0 —02 16
e 25" 4
62 Y : lay ay as), 1

The first matrix has two rows (horizontal lines of entries) and three columns (vertical

lines). The second and third matrices are square matrices. Matrices having just a single
row or column are called vectors. Thus the fourth and last matrices are called row and
column vectors, respectively.
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We shall denote matrices by capital letters A, B, C, ..., or A = [ajj]

m X n is called the size of the matrix.

a1 Qg2 : o A1m

az1 Az . o Arm
A=[aj] =

An1  Qn2 T ) Anm

If m=n, we call A an nxn square matrix. A matrix that is not square is called a
rectangular matrix.

1.2 Equality of Matrices:

Two matrices A = [aj ] and B = [by] are equal (written A = B) if and only if they have
the same size, and the corresponding elements are equal, that is, a1; = b;1, a;2 = by, and
so on. Matrices that are not equal are called different.

Example: Equality of Matrices

Let

Then

A=B if and only if
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1.3 Addition of Matrices

The sum of two matrices A = [a;; ] and B = [bjj] of the same size is written A + B and has
the entries ajj+b;; obtained by adding the corresponding entries of A and B. Matrices of
different sizes cannot be added.

Example:

4 6 3 s -1 0 | 5 3
It A and B : , then A+ B .
0 ] 2 3 1 HJ 3 2 2

1.4 Scalar Multiplication (Multiplication by a Number)

The product of any mxn matrix A = [a;;] and any scalar ¢ (number c) is written cA and is
the mxn matrix cA = [caj] obtained by multiplying each entry of A by c.

Example:

27 —-1.87 -2.7 1.87] '3 27 0 0
10
If A= 0 0.9 |. then A= 0 09|, o A= 0 11, OA 0 0].
90 -45 -9.0 4.5 10 5 0 0

Rules for Matrix Addition and Scalar Multiplication:
@ A+B=B+A

(b) ( A+B)+C=A+(B+0C)

C)A+0=A

(d) A +(-A)=0

(@ c(A+B)=cA+cB

(b) (c + k)A = cA + kA

(c) c(kA) = (ck)A

d) 1A= A

1.4 Matrix multiplication

The product C = AB (in this order) of an mxn matrix A = [a;] times an rxp matrix B=[bj]
is defined if and only if r = n and is then the mxp matrix C = [c;j] with entries



n
Cij =Z ailblj =ai1b1j+ai2b2]-+--~+ ainbnj i=1,"',m

=1
J = 1’.. ’p
A B = C
[m>n]  [nxp] [m>p]
Example:

3 5 I R 3 1 22 2 43 42

AB = R 0 2 5 0 7 8 26 —16 14 6

=g =3 2 9 4 I I -9 4 37 28

Here ¢4 =32+ 55+ (—1)+9 = 22, and so on. The entry in the box is ¢cg3 =43 +0-7 + 21 = 14,

The product BA is not defined.
Note: Matrix Multiplication is Not Commutative, AB # BA in general.

Rules of Matrix Multiplication:
(a) (kA)B = k(AB) = A(kB)

(b) A(BC) = (AB)C
(c)(A+B)C=AC+BC

(d C(A+B)=CA+CB

1.5 Transpose of a Matrix

Given any mxn matrix A=[a;], we define the transpose of A, denoted as AT and read as
“A-transpose” as

rd11 A1 ’ o Am17
A1z Q2 : o Am2
AT =[ag]" = [a5] =
A1y, Q2n ) ) . Amn-
Example: 1 277T
1 3 5
S Al =1, 4 6
5 6



1.6 Types of Matrices:

Type of Matrix Details Example
Row Matrix A = [aij]ixn [0 1 1-2]
Column Matrix A = [aij]mx1 1
2
—4
5
00
Zero or Null Matrix A = [aij]mxn Where, ajj =0 00
00
[2]

Singleton Matrix

A = [ajj]mxnWhere, m=n =1

. : 1 2 3 4
Horizontal Matrix [@ij]mxn Where n > m
2 5 1 1
25
. . 11
Vertical Matrix [@ij]mxn Where, m > n -
2 4
. 4 7
Square Matrix [@ij]mxnWhere, m =n lg 13]
2 0 0]
Diagonal Matrix A = [aj] ,aij=0,wheni#; 0 3 0
0 0 4]
A = [aij]mxn Where, 1 0 0]
Identity (Unit) Matrix (1) o {1, i=j 0 1 0
TN, i 0 0 1]
. _ 3 1 2] 1 00
Can be either upper triangular 0 4 3 5 3 0
Triangular Matrix (aij =0, when i > j) or lower 00 6
triangular (aij = 0 when i < j) 1 4 5 2
Upper Matrix Lower Matrix
Singular Matrix |A|=0
Non-Singular Matrix |Al £ 0
A = [ajj] where, aijj = a;i 1 2 3
Symmetric Matrix or A=AT 2 4 5
(A is a square matrix) 3 5 2
A = [a;] where, aj; = -aj 0 21
Skew-Symmetric Matrix or A= -AT -2 0 -3
(A is a square matrix) -1.3 0
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1.7 Determinants

The scalar quantity associated with a square matrix, is called “determinant”. We denote
the determinant of an nxn matrix A=[ajj] as

ai1 Qg2 ' o A1n
A1 Ay ' o Arn
1] . ] n
det A: ' = Z aij CU
) . _ ) L
an1  Qn2 ' ! ! Ann

n
|A|: a;q Ail + a;» AiZ + ...+al~n Ain = al-]- Cl] (rOW def|n|t|0n)
Zj=1

n
A ay; Ay + @y Agj + .4 Anj :Z. Ja; C; (column definition)
l_

where Cj; is called the cofactor of the aj; element and is defined as
Cij= (-1)" M

where Mj;is called the minor of a;;, namely the determinant of (n-1) x (n-1) matrix that
survives when the row and column containing a;; are struck out.

Special Cases in Determinants:

1- Determinant of order 1: The determinant of a matrix of the first order (n=1) is the
element itself.
Example: If A=[-1], then detA=-1.

2- Determinant of order 2:

a ¢
det = (a)(@) - (b)(¢)
b d
3 3
det =(3)(6) - (4)(5) =18 -20="-2



3- Determinant of order 3:
(a) The Leibniz formula:

= a(ei — fh) — b(di — fg) + c(dh — eg)

@ Q9
> o o
O

= aei + bfg+ cdh — ceg — bdi — afh.
(b) The rule of Sarrus:

d t(A) \ >< >\(l/'(l
e = o :
/ >< )\.(/\.(/‘

det(A)= au az ass+aazsas+aizdsds-as182,813-a32823811-833821812

Notes:

I.  The scheme of Sarrus for calculating the determinant of a 3 x 3 matrix does not
carry over into higher dimensions.

ii.  The Leibniz formula expresses the determinant of an n x n-matrix in a manner
which is consistent across higher dimensions.

- If the matrix is upper or lower triangular matrix, the determinant of the matrix is
the product of the elements on the main diagonal.

Some Properties of determinants:

1- If any row or column of a determinant detA only contains zero elements, then detA= 0.
2- If A is a square matrix with the transpose AT, then detA = detAT.

3- If each element of a row or column of a square matrix A is multiplied by a

constant k, then the value of the determinant is kdetA.

4- If two rows (or columns) of a square matrix are interchanged, the sign of the
determinant is changed.

5- If any two rows or columns of a square matrix A are proportional, then

detA =0.



Example 1: Evaluate the determinant of the given matrix by cofactor expansion.

2 1 -2 1
0 5 0 4
1 6 I 0
5 -1 1 1
2 -2 1
2 -2 1 2 —2
: 0 5 0 4
Solution: |A|= L 6 10 =5[1 1 O|+4|1 6 1|=5(0)+4(80) =320
5 1 1 5 —1 1
5 -1 1 1
Example 2: Explain the following results:
1 2 3 4 1 2 6 6 2 1 2 3
2 5 7 3 4 7 3 2 6 7 6 9
=0, =0 and =0
4 10 14 6 0 00O 0 6 00
3 4 2 7 1 2 29 1 21 4

1.8 Matrix Partitioning:

The idea of matrix partitioning is that any matrix A (which is larger than 1x1) may be
portioned into a number of smaller matrices called blocks.

Example: The matrix

[3 0 -11]5 9 —2'|
A= -5 2 4 (0 -3 l

% & 3|1 7] _4J
= Can also be written as the 2 X 3 partitioned (or
block) matrix - [__1” Fon ,.1“j|

A An  Anxn

= Whose entries are the blocks (or submatrices)

3 0 —I 5 9 =
"’”z[-s 2 4]‘ ,-1,:=[“ —3]' ’“‘z[ I:|

An=[-8 =6 3], An=[1 7] An=[-4]



Example : Find AB, where

6 4
2 -3 1 0 -4 -2 1
A=|1 5 -2 3 1| ,B=|-37
—4 -2 7 -1 -1 3
|5 2]
Solution:
"6 4
2 -3 11]0 —4 -2 1
A=|1 5 —2‘3 -1 :m” ﬁ”},B: ~3 7 :[gl}
—4 2|7 -1 b e 1 3 .
_5 2_

AB — (A1 AIZ] lBl} _ [AIIBI +A1252}

A1 Ax| | B2 A21B1 + AnB)

1.9 Inverse of a Matrix

If A is a non-singular square matrix, there is an existence of n x n matrix A, which is
called the inverse matrix of A, such that it satisfies the property:

1
Al= Z and AAT=AA=|

where 1 is the Identity matrix. The inverse of a nonsingular n x n matrix A=[a;] is:

C11 Czl E] Cnl
A‘l—i [C--]T _ 1 [cz €22 . Cn2|_adj(4)
4] L7Y lal |8 Al
Cin Con o Cpn

where [Cj]" is the transpose of cofactors matrix of A, adj(A) is the adjoint matrix of A.



Properties of the Inverse:

Let A and B be nonsingular matrices. Then
(i) (A=A

(ii) (AB)! = B!A?

(iii) (AT)* = (A7)'

2 2 0
Example: Find the inverse of A = | =2 1 1
3 0 1

SOLUTION Since det A = 12, we can find A~" from (5). The cofactors corresponding to the
entries in A are

C—ll—l C_7—21_5 (:_—21_73
11 0 1 12 3 1 13 3 0
C_72 0—2C—2 ()_2 C_72 2_6
21 0 1 22 3 1 23 3 0
2 0 2 0 2 2
C31 ‘l 1‘ C32 ‘2 1‘ C33 ‘2 1 6
From (5) we then obtain
o2 2\ (b
oo b Hl=] 5 1 _1
Al = 5 2 =21=| % & -:
12\ _ T T
3 6 6 1 2 2
1.10 Solution of linear simultaneous equations:
A system of m linear equations in n variables X1, X, ..., Xn,
a1Xy + apXe + ... + aXn = by
AxXy+ axXo+ ... + axX,=b, (1)

amiX1 + amaXe + ... + amnXn = b

can be written completely as a matrix AX=B, where



ai; Adg2 QAin Xq b,
dz1 Az Aan Xy b,

A= , X= : B=
-aml amZ amn- n _bm

Let us suppose that m = n in the equation above, so that the coefficient matrix A is

nxn. In particular, if A is nonsingular, then the system AX = B can be solved by:
X=A'B

Where X is variable matrix, A coefficients matrix and B constant matrix. (Note: if

det A=0, the system of linear equations is called inconsistent, i.e. there is no unique
solution).

Example: Use the inverse of the coefficient matrix to solve the system
2X1 + Xz =2
-2X1+ 3% +4x3 =4

-5X1 + 5o + 6x3 = -1

Solution:
-2 5 -3
ATl=1] -8 17 =10 (Home work 1)
5 —10 6
Thus
X 2 0 1\ 2 —2 5 =3 2 19
n|=|-23 4 4l=(-8 17 =10l 4|=[ e
Xs -5 5 6] \-1I 5 10 6/ \—1 ~36

Consequently, x; = 19, x, = 62, and x; = —36.

In addition to the inverse matrix method shown above, there are two another widely used
important methods:
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1- Cramer’s Rule

Let A be the coefficient matrix of system (1). If det A # 0, then the solution of (1) is
given by

X, = detA4 X = detA, X, — detA,
1 detA ' T2 detA > 7T detA
where Ay, k=1, 2, ..., n,is defined as:
kth column
)
Q11 Q12 - Q1 g—1 D1 Q141 e Qap]
A1 Az - Gy -1 Dy Q41 - Q2p
Ak=
LAp1 Anz2 - Qn k-1 bn An k+1 -+ Onn-

Example: Use Cramer’s rule to solve the system

3x, + 2%, + x3=7
Xi— x+3x;=3

SOLUTION The solution requires the evaluation of four determinants:

3 2 1 7 2 1

detA = 1|1 —1 3| =13, detA, = (3 —1 3| = —39,
5 4 =2 1 4 -2
3 7 1 3 2 17

det A, = 3 3| =78, detA; = [l —1 3| =52
5 1 -2 5 4 1

Thus, (6) gives
det A, det A, _ det A,
| = = —_— x2 = = £ = - = 4

det A det A det A
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2- Gaussian Elimination Method:

There are three types of elementary row operations which may be performed on the rows
of a matrix:

1- Swap the positions of two rows.
2- Multiply a row by a non-zero scalar.
3- Add to one row a scalar multiple of another.

The solution is then found by the process called back-substitution.
Example: Solve the following linear system using Gaussian elimination:
2x, + 6x, + x3 =17
X, +2x,— x3=—1

5_1'1 + ?){': — 4_1'3 =90

Solution: Using row operations on the augmented matrix of the system, we obtain:

2 6 1| 7 /1 2 —1|-1
R <R,

1 2 -1|-1 = |2 6 1| 7

5 7 —4| 9 \5 7 —4| 9

-2tk (12 —1]-1\  [1 2 —1|-1
—5R,+R; Ry 3 9
= 0 2 3 9] = 10 1 5| 5
0o -3 1|14 \0 -3 1|14

1 2 -1|-1 1 2 —-1|-1

3Ry + Ry 3 g %R‘u 3 9
= 0 1 3 5 = 0 1 5 3
0o o % 2 0 0 1| 5

Substituting x3 = 5 into the second equation gives X, = -3. Substituting both these values
back into the first equation finally yields x; = 10.

Home Works:

Exercises 8.2: Problems 1-20 (Only use Gaussian elimination).
Exercises 8.4: All Problems.

Exercises 8.5: 1-16.

Exercises 8.7: Problems 1-11.
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