Unit one: Matrices

1.1 Basic Definitions:

A matrix is a rectangular array of numbers (or functions) enclosed in brackets. These numbers (or functions) are called the entries (or sometimes the elements) of the matrix. For example,

$$
\left.\begin{array}{lc}
{\left[\begin{array}{ccc}
0.3 & 1 & -5 \\
0 & -0.2 & 16
\end{array}\right],} & {\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right],} \\
{\left[\begin{array}{cc}
e^{-x} & 2 x^{2} \\
e^{6 x} & 4 x
\end{array}\right],} & {\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3}
\end{array}\right],}
\end{array}\right]\left[\begin{array}{c}
4 \\
\frac{1}{2} \tag{1}
\end{array}\right],
$$

The first matrix has two rows (horizontal lines of entries) and three columns (vertical lines). The second and third matrices are square matrices. Matrices having just a single row or column are called vectors. Thus the fourth and last matrices are called row and column vectors, respectively.

We shall denote matrices by capital letters $\mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots$, or $\mathbf{A}=\left[a_{i j}\right]$
$\boldsymbol{m} \times \boldsymbol{n}$ is called the size of the matrix.
$\mathbf{A} \equiv\left[a_{i j}\right]=\left|\begin{array}{cccccc}a_{11} & a_{12} & \cdot & \cdot & \cdot & a_{1 m} \\ a_{21} & a_{22} & \cdot & \cdot & \cdot & a_{2 m} \\ \cdot & \cdot & \cdot & & & \cdot \\ \cdot & \cdot & & \cdot & & \cdot \\ \cdot & \cdot & & \cdot & \cdot & \cdot \\ a_{n 1} & a_{n 2} & \cdot & \cdot & \cdot & a_{n m}\end{array}\right|$
If $m=n$, we call \mathbf{A} an $n \times n$ square matrix. A matrix that is not square is called a rectangular matrix.

1.2 Equality of Matrices:

Two matrices $\mathbf{A}=\left[a_{\mathrm{jk}}\right]$ and $\mathbf{B}=\left[b_{\mathrm{jk}}\right]$ are equal (written $\mathbf{A}=\mathbf{B}$) if and only if they have the same size, and the corresponding elements are equal, that is, $a_{11}=b_{11}, a_{12}=b_{12}$, and so on. Matrices that are not equal are called different.

Example: Equality of Matrices
Let

$$
\mathbf{A}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \quad \text { and } \quad \mathbf{B}=\left[\begin{array}{rr}
4 & 0 \\
3 & -1
\end{array}\right] .
$$

Then

$$
\mathbf{A}=\mathbf{B} \quad \text { if and only if } \quad \begin{array}{ll}
a_{11}=4, & a_{12}=0, \\
a_{21}=3, & a_{22}=-1 .
\end{array}
$$

1.3 Addition of Matrices

The sum of two matrices $\mathbf{A}=\left[a_{i j}\right]$ and $\mathbf{B}=\left[b_{i j}\right]$ of the same size is written $\mathbf{A}+\mathbf{B}$ and has the entries $a_{i j}+b_{i j}$ obtained by adding the corresponding entries of \mathbf{A} and \mathbf{B}. Matrices of different sizes cannot be added.

Example:

If $\quad \mathbf{A}=\left[\begin{array}{rrr}-4 & 6 & 3 \\ 0 & 1 & 2\end{array}\right]$ and $\mathbf{B}=\left[\begin{array}{rrr}5 & -1 & 0 \\ 3 & 1 & 0\end{array}\right]$, then $\mathbf{A}+\mathbf{B}=\left[\begin{array}{lll}1 & 5 & 3 \\ 3 & 2 & 2\end{array}\right]$.

1.4 Scalar Multiplication (Multiplication by a Number)

The product of any $m \times n$ matrix $\mathbf{A}=\left[a_{i j}\right]$ and any scalar c (number c) is written $c \mathbf{A}$ and is the $m \times n$ matrix $c \mathbf{A}=\left[c a_{j k}\right]$ obtained by multiplying each entry of \mathbf{A} by c .

Example:

$$
\text { If } \quad \mathbf{A}=\left[\begin{array}{cr}
2.7 & -1.8 \\
0 & 0.9 \\
9.0 & -4.5
\end{array}\right] \text {, then }-\mathbf{A}=\left[\begin{array}{cr}
-2.7 & 1.8 \\
0 & -0.9 \\
-9.0 & 4.5
\end{array}\right], \frac{10}{9} \mathbf{A}=\left[\begin{array}{rr}
3 & -2 \\
0 & 1 \\
10 & -5
\end{array}\right], \quad \mathbf{A}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right] \text {. }
$$

Rules for Matrix Addition and Scalar Multiplication:

(a) $\mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A}$
(b) $(\mathbf{A}+\mathbf{B})+\mathbf{C}=\mathbf{A}+(\mathbf{B}+\mathbf{C})$
(c) $\mathbf{A}+\mathbf{0}=\mathbf{A}$
(d) $\mathbf{A}+(-\mathbf{A})=\mathbf{0}$
(a) $c(\mathbf{A}+\mathbf{B})=c \mathbf{A}+c \mathbf{B}$
(b) $(c+k) \mathbf{A}=c \mathbf{A}+k \mathbf{A}$
(c) $c(k \mathbf{A})=(c k) \mathbf{A}$
(d) $\mathbf{I A}=\mathbf{A}$

1.4 Matrix multiplication

The product $\mathbf{C}=\mathbf{A B}$ (in this order) of an $m \times n$ matrix $\mathbf{A}=\left[a_{i j}\right]$ times an $r \times p$ matrix $\mathbf{B}=\left[b_{i j}\right]$ is defined if and only if $r=n$ and is then the $m \times p$ matrix $\mathbf{C}=\left[c_{i j}\right]$ with entries

$$
c_{i j}=\sum_{l=1}^{n} a_{i l} b_{l j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i n} b_{n j} \quad i=1, \cdots, m
$$

$$
\begin{array}{cccc}
\mathbf{A} & \mathbf{B} & = & \mathbf{C} \\
{[m \times n]} & {[n \times p]} & & {[m \times p]}
\end{array}
$$

Example:

$$
\mathbf{A B}=\left[\begin{array}{rrr}
3 & 5 & -1 \\
4 & 0 & 2 \\
-6 & -3 & 2
\end{array}\right]\left[\begin{array}{rrrr}
2 & -2 & 3 & 1 \\
5 & 0 & 7 & 8 \\
9 & -4 & 1 & 1
\end{array}\right]=\left[\begin{array}{rrrr}
22 & -2 & 43 & 42 \\
26 & -16 & 14 & 6 \\
-9 & 4 & -37 & -28
\end{array}\right]
$$

Here $c_{11}=3 \cdot 2+5 \cdot 5+(-1) \cdot 9=22$, and so on. The entry in the box is $c_{23}=4 \cdot 3+0 \cdot 7+2 \cdot 1=14$. The product $\mathbf{B A}$ is not defined.

Note: Matrix Multiplication is Not Commutative, $\boldsymbol{A B} \neq \boldsymbol{B A}$ in general.

Rules of Matrix Multiplication:

(a) $(k \mathbf{A}) \mathbf{B}=k(\mathbf{A B})=\mathbf{A}(k \mathbf{B})$
(b) $\mathbf{A}(\mathbf{B C})=(\mathbf{A B}) \mathbf{C}$
(c) $(\mathbf{A}+\mathbf{B}) \mathbf{C}=\mathbf{A C}+\mathbf{B C}$
(d) $\mathbf{C}(\mathbf{A}+\mathbf{B})=\mathbf{C A}+\mathbf{C B}$

1.5 Transpose of a Matrix

Given any $m \times n$ matrix $\mathbf{A}=\left[a_{i j}\right]$, we define the transpose of \mathbf{A}, denoted as \mathbf{A}^{T} and read as
"A-transpose" as
$\mathbf{A}^{\mathrm{T}}=\left[a_{i j}\right]^{\mathrm{T}}=\left[a_{j i}\right]=\left[\begin{array}{cccccc}a_{11} & a_{21} & \cdot & \cdot & \cdot & a_{m 1} \\ a_{12} & a_{22} & \cdot & \cdot & \cdot & a_{m 2} \\ \cdot & \cdot & \cdot & & & \cdot \\ \cdot & \cdot & & \cdot & & \cdot \\ \cdot & \cdot & & & \cdot & \cdot \\ a_{1 n} & a_{2 n} & \cdot & \cdot & \cdot & a_{m n}\end{array}\right]$
Example: $\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{lll}1 & 3 & 5 \\ 2 & 4 & 6\end{array}\right]$

1.6 Types of Matrices:

Type of Matrix	Details	Example
Row Matrix	$\mathbf{A}=\left[a_{i j}\right]_{1 \times n}$	$\left[\begin{array}{llll}0 & 1 & 1 & -2\end{array}\right]$
Column Matrix	$\mathbf{A}=\left[a_{i j}\right]_{m \times 1}$	$\left[\begin{array}{c}-1 \\ 2 \\ -4 \\ 5\end{array}\right]$
Zero or Null Matrix	$\mathbf{A}=\left[a_{i j}\right]_{m \times n}$ where, $a_{i \mathrm{ij}}=0$	$\left[\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right]$
Singleton Matrix	$\mathbf{A}=\left[a_{i j}\right]_{\mathrm{m} \times \mathrm{n}}$ where, $m=n=1$	[2]
Horizontal Matrix	$\left[a_{i j}\right]_{\mathrm{m} \times \mathrm{n}}$ where $n>m$	$\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 5 & 1 & 1\end{array}\right]$
Vertical Matrix	$\left[a_{i j}\right]_{\mathrm{m} \mathrm{\times n}}$ where, $m>n$	$\left[\begin{array}{ll}2 & 5 \\ 1 & 1 \\ 3 & 6 \\ 2 & 4\end{array}\right]$
Square Matrix	$\left[a_{i j}\right]_{\mathrm{m} \times \mathrm{n}}$ where, $m=n$	$\left[\begin{array}{cc}4 & 7 \\ 9 & 13\end{array}\right]$
Diagonal Matrix	$\mathbf{A}=\left[a_{i j}\right], a_{i j}=0$, when $i \neq j$	$\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4\end{array}\right]$
Identity (Unit) Matrix (I)	$\begin{aligned} & \mathbf{A}=\left[\begin{array}{ll} \left.a_{i j}\right]_{m \times n} \text { where, }, \\ a_{i j} & = \begin{cases}1, & i=j \\ 0, & i \neq j\end{cases} \end{array} .\right. \end{aligned}$	$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
Triangular Matrix	Can be either upper triangular ($a_{i j}=0$, when $i>j$) or lower triangular $\left(a_{i j}=0\right.$ when $\left.i<j\right)$	$\begin{aligned} & {\left[\begin{array}{lll} 3 & 1 & 2 \\ 0 & 4 & 3 \\ 0 & 0 & 6 \end{array}\right]} \end{aligned} \quad\left[\begin{array}{lll} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 4 & 5 & 2 \end{array}\right] \quad \text { Lower Matrix }$
Singular Matrix	$\|\mathbf{A}\|=0$	
Non-Singular Matrix	$\|\mathbf{A}\| \neq 0$	
Symmetric Matrix	$\begin{aligned} & \mathbf{A}=\left[a_{i j}\right] \text { where, } a_{i j}=a_{j i} \\ & \text { or } \mathbf{A}=\mathbf{A}^{\mathrm{T}} \\ & (\mathbf{A} \text { is a square matrix }) \end{aligned}$	$\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 2\end{array}\right)$
Skew-Symmetric Matrix	$\mathbf{A}=\left[a_{i j}\right] \text { where, } a_{i j}=-a_{j i}$ or $\mathbf{A}=-\mathbf{A}^{T}$ (\mathbf{A} is a square matrix)	$\left[\begin{array}{ccc}0 & 2 & 1 \\ -2 & 0 & -3 \\ -1 & 3 & 0\end{array}\right]$

1.7 Determinants

The scalar quantity associated with a square matrix, is called "determinant". We denote the determinant of an $n \times n$ matrix $\mathbf{A}=\left[a_{i j}\right]$ as

$$
\begin{aligned}
& \operatorname{det} \mathbf{A}=\left|\begin{array}{cccccc}
a_{11} & a_{12} & \cdot & \cdot & \cdot & a_{1 n} \\
a_{21} & a_{22} & \cdot & \cdot & \cdot & a_{2 n} \\
\cdot & \cdot & \cdot & & & \cdot \\
\cdot & \cdot & & \cdot & & \cdot \\
\cdot & \cdot & & \cdot & \cdot & \cdot \\
a_{n 1} & a_{n 2} & \cdot & \cdot & \cdot & a_{n n}
\end{array}\right|=\sum_{1}^{n} a_{i j} C_{i j} \\
& |\mathbf{A}|=a_{i 1} A_{i 1}+a_{i 2} A_{i 2}+\ldots+a_{i n} A_{i n}=\sum_{j=1}^{n} a_{i j} C_{i j} \quad \text { (row definition) } \\
& |\mathbf{A}|=a_{1 j} A_{1 j}+a_{2 j} A_{2 j}+\ldots+a_{n j} A_{n j}=\sum_{i=1}^{n} a_{i j} C_{i j} \quad \text { (column definition) }
\end{aligned}
$$

where $C_{i j}$ is called the cofactor of the $a_{i j}$ element and is defined as

$$
C_{i j} \equiv(-1)^{i+j} \mathbf{M}_{i j}
$$

where $\mathrm{M}_{i j}$ is called the minor of $a_{i j}$, namely the determinant of $(n-1) \times(n-1)$ matrix that survives when the row and column containing $a_{i j}$ are struck out.

Special Cases in Determinants:

1- Determinant of order 1: The determinant of a matrix of the first order $(n=1)$ is the element itself.
Example: If $\mathbf{A}=[-1]$, then $\operatorname{det} \mathbf{A}=-1$.
2- Determinant of order 2:
$\operatorname{det}\left[\begin{array}{ll}a & c \\ b & d\end{array}\right]=(\mathbf{a})(\mathbf{d})-(\mathbf{b})(\mathbf{c})$
$\operatorname{det}\left[\begin{array}{ll}3 & 5 \\ 4 & 6\end{array}\right]=(3)(6)-(4)(5)=18-\mathbf{2 0}=-\mathbf{2}$

3- Determinant of order 3:
(a) The Leibniz formula:

$$
\begin{aligned}
\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right| & =a(e i-f h)-b(d i-f g)+c(d h-e g) \\
& =a e i+b f g+c d h-c e g-b d i-a f h .
\end{aligned}
$$

(b) The rule of Sarrus:

$$
\operatorname{det}(\mathbf{A})=a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+\overline{a_{13}} a_{21} a_{32}-a_{31} \overline{-} \overline{a 2} a_{13}-a_{32} a_{23} a_{11}-a_{33} a_{21} a_{12}
$$

Notes:

i. The scheme of Sarrus for calculating the determinant of a 3×3 matrix does not carry over into higher dimensions.
ii. The Leibniz formula expresses the determinant of an $n \times n$-matrix in a manner which is consistent across higher dimensions.

4- If the matrix is upper or lower triangular matrix, the determinant of the matrix is the product of the elements on the main diagonal.

Some Properties of determinants:

1 - If any row or column of a determinant $\operatorname{det} \mathbf{A}$ only contains zero elements, then $\operatorname{det} \mathbf{A}=0$.
2 - If \mathbf{A} is a square matrix with the transpose \mathbf{A}^{T}, then $\operatorname{det} \mathbf{A}=\operatorname{det} \mathbf{A}^{\mathrm{T}}$.
3- If each element of a row or column of a square matrix \mathbf{A} is multiplied by a constant k, then the value of the determinant is $k \operatorname{det} \mathbf{A}$.

4- If two rows (or columns) of a square matrix are interchanged, the sign of the determinant is changed.

5- If any two rows or columns of a square matrix \mathbf{A} are proportional, then $\operatorname{det} \mathbf{A}=0$.

Example 1: Evaluate the determinant of the given matrix by cofactor expansion.
$\left(\begin{array}{rrrr}2 & 1 & -2 & 1 \\ 0 & 5 & 0 & 4 \\ 1 & 6 & 1 & 0 \\ 5 & -1 & 1 & 1\end{array}\right)$
Solution: $|\mathbf{A}|=\left|\begin{array}{rrrr}2 & 1 & -2 & 1 \\ 0 & 5 & 0 & 4 \\ 1 & 6 & 1 & 0 \\ 5 & -1 & 1 & 1\end{array}\right|=5\left|\begin{array}{rrr}2 & -2 & 1 \\ 1 & 1 & 0 \\ 5 & 1 & 1\end{array}\right|+4\left|\begin{array}{rrr}2 & 1 & -2 \\ 1 & 6 & 1 \\ 5 & -1 & 1\end{array}\right|=5(0)+4(80)=320$

Example 2: Explain the following results:

$$
\left|\begin{array}{cccc}
1 & 2 & 3 & 4 \\
2 & 5 & 7 & 3 \\
4 & 10 & 14 & 6 \\
3 & 4 & 2 & 7
\end{array}\right|=0, \quad\left|\begin{array}{cccc}
1 & 2 & 6 & 6 \\
4 & 7 & 3 & 2 \\
0 & 0 & 0 & 0 \\
1 & 2 & 2 & 9
\end{array}\right|=0 \quad \text { and }\left|\begin{array}{llll}
2 & 1 & 2 & 3 \\
6 & 7 & 6 & 9 \\
0 & 6 & 0 & 0 \\
1 & 2 & 1 & 4
\end{array}\right|=0
$$

1.8 Matrix Partitioning:

The idea of matrix partitioning is that any matrix \mathbf{A} (which is larger than 1×1) may be portioned into a number of smaller matrices called blocks.

Example: The matrix

$$
A=\left[\begin{array}{rrr|rr|r}
3 & 0 & -1 & 5 & 9 & -2 \\
-5 & 2 & 4 & 0 & -3 & 1 \\
\hline-8 & -6 & 3 & 1 & 7 & -4
\end{array}\right]
$$

- Can also be written as the 2×3 partitioned (or block) matrix

$$
A=\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23}
\end{array}\right]
$$

- Whose entries are the blocks (or submatrices)

$$
\left.\begin{array}{lll}
A_{11}=\left[\begin{array}{rrr}
3 & 0 & -1 \\
-5 & 2 & 4
\end{array}\right], & A_{12}=\left[\begin{array}{rr}
5 & 9 \\
0 & -3
\end{array}\right], & A_{13}=\left[\begin{array}{r}
-2 \\
1
\end{array}\right] \\
A_{21}=\left[\begin{array}{lll}
-8 & -6 & 3
\end{array}\right], & A_{22}=\left[\begin{array}{ll}
1 & 7
\end{array}\right], & A_{23}=[-4
\end{array}\right]
$$

$\underline{\text { Example }: \text { Find } A B \text {, where }}$

$$
A=\left[\begin{array}{ccccc}
2 & -3 & 1 & 0 & -4 \\
1 & 5 & -2 & 3 & -1 \\
0 & -4 & -2 & 7 & -1
\end{array}\right], B=\left[\begin{array}{cc}
6 & 4 \\
-2 & 1 \\
-3 & 7 \\
-1 & 3 \\
5 & 2
\end{array}\right]
$$

Solution:

$$
\begin{aligned}
A & =\left[\begin{array}{ccc|cc}
2 & -3 & 1 & 0 & -4 \\
1 & 5 & -2 & 3 & -1 \\
\hline 0 & -4 & -2 & 7 & -1
\end{array}\right]=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right], B=\left[\begin{array}{cc}
6 & 4 \\
-2 & 1 \\
-3 & 7 \\
-1 & 3 \\
5 & 2
\end{array}\right]=\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right] \\
A B & =\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right]=\left[\begin{array}{l}
A_{11} B_{1}+A_{12} B_{2} \\
A_{21} B_{1}+A_{22} B_{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
-5 & 4 \\
-6 & 2 \\
\hline 2 & 1
\end{array}\right]
\end{aligned}
$$

1.9 Inverse of a Matrix

If \mathbf{A} is a non-singular square matrix, there is an existence of $n \times n$ matrix \mathbf{A}^{-1}, which is called the inverse matrix of \mathbf{A}, such that it satisfies the property:
$\mathbf{A}^{-1}=\frac{1}{\boldsymbol{A}}$ and $\mathbf{A A}^{-1}=\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}$
where \mathbf{I} is the Identity matrix. The inverse of a nonsingular $n \times n$ matrix $\mathbf{A}=\left[a_{i j}\right]$ is:
$\mathbf{A}^{-1}=\frac{1}{|\boldsymbol{A}|}\left[C_{i j}\right]^{T}=\frac{1}{|\boldsymbol{A}|}\left[\begin{array}{cccc}c_{11} & c_{21} & \ldots & c_{n 1} \\ c_{12} & c_{22} & \ldots & c_{n 2} \\ \vdots & \vdots & \ddots & \vdots \\ c_{1 n} & c_{2 n} & \ldots & c_{n n}\end{array}\right]=\frac{\operatorname{adj}(\boldsymbol{A})}{|\boldsymbol{A}|}$
where $\left[\boldsymbol{C}_{i j}\right]^{\mathrm{T}}$ is the transpose of cofactors matrix of $\mathbf{A}, \operatorname{adj}(\mathbf{A})$ is the adjoint matrix of \mathbf{A}.

Properties of the Inverse:

Let \mathbf{A} and \mathbf{B} be nonsingular matrices. Then
(i) $\left(\mathbf{A}^{-1}\right)^{-1}=\mathbf{A}$
(ii) $(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}$
(iii) $\left(\mathbf{A}^{T}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{T}$

Example: Find the inverse of $\mathbf{A}=\left(\begin{array}{rrr}2 & 2 & 0 \\ -2 & 1 & 1 \\ 3 & 0 & 1\end{array}\right)$.
SOLUTION Since det $\mathbf{A}=12$, we can find \mathbf{A}^{-1} from (5). The cofactors corresponding to the entries in \mathbf{A} are

$$
\begin{array}{lll}
C_{11}=\left|\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right|=1 & C_{12}=-\left|\begin{array}{rr}
-2 & 1 \\
3 & 1
\end{array}\right|=5 & C_{13}=\left|\begin{array}{rr}
-2 & 1 \\
3 & 0
\end{array}\right|=-3 \\
C_{21}=-\left|\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right|=-2 & C_{22}=\left|\begin{array}{ll}
2 & 0 \\
3 & 1
\end{array}\right|=2 & C_{23}=-\left|\begin{array}{ll}
2 & 2 \\
3 & 0
\end{array}\right|=6 \\
C_{31}=\left|\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right|=2 & C_{32}=-\left|\begin{array}{rr}
2 & 0 \\
-2 & 1
\end{array}\right|=-2 & C_{33}=\left|\begin{array}{rr}
2 & 2 \\
-2 & 1
\end{array}\right|=6 .
\end{array}
$$

From (5) we then obtain

$$
\mathbf{A}^{-1}=\frac{1}{12}\left(\begin{array}{rrr}
1 & -2 & 2 \\
5 & 2 & -2 \\
-3 & 6 & 6
\end{array}\right)=\left(\begin{array}{rrr}
\frac{1}{12} & -\frac{1}{6} & \frac{1}{6} \\
\frac{5}{12} & \frac{1}{6} & -\frac{1}{6} \\
-\frac{1}{4} & \frac{1}{2} & \frac{1}{2}
\end{array}\right) .
$$

1.10 Solution of linear simultaneous equations:

A system of m linear equations in n variables $x_{1}, x_{2}, \ldots, x_{n}$,
$a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1}$
$a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2}$
$\vdots \quad \vdots$
$a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=b_{m}$
can be written completely as a matrix $\mathbf{A X}=\mathbf{B}$, where

$$
\mathbf{A}=\left[\begin{array}{cccccc}
a_{11} & a_{12} & \cdot & \cdot & \cdot & a_{1 n} \\
a_{21} & a_{22} & \cdot & \cdot & \cdot & a_{2 n} \\
\cdot & \cdot & \cdot & & & \cdot \\
\cdot & \cdot & & \cdot & & \cdot \\
\cdot & \cdot & & & \cdot & \cdot \\
a_{m 1} & a_{m 2} & \cdot & \cdot & \cdot & a_{m n}
\end{array}\right], \quad \mathbf{X}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\cdot \\
\cdot \\
\cdot \\
x_{n}
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\cdot \\
\cdot \\
\cdot \\
b_{m}
\end{array}\right]
$$

Let us suppose that $m=n$ in the equation above, so that the coefficient matrix \mathbf{A} is $n \times n$. In particular, if \mathbf{A} is nonsingular, then the system $\mathbf{A X}=\mathbf{B}$ can be solved by:

$$
\mathbf{X}=\mathbf{A}^{-1} \mathbf{B}
$$

Where \mathbf{X} is variable matrix, \mathbf{A} coefficients matrix and \mathbf{B} constant matrix. (Note: if $\operatorname{det} \mathbf{A}=0$, the system of linear equations is called inconsistent, i.e. there is no unique solution).

Example: Use the inverse of the coefficient matrix to solve the system

$$
\begin{aligned}
2 x_{1}+\quad x_{3} & =2 \\
-2 x_{1}+3 x_{2}+4 x_{3} & =4 \\
-5 x_{1}+5 x_{2}+6 x_{3} & =-1
\end{aligned}
$$

Solution:

$$
\mathbf{A}^{-1}=\left(\begin{array}{rrr}
-2 & 5 & -3 \\
-8 & 17 & -10 \\
5 & -10 & 6
\end{array}\right) \quad \text { (Home work!) }
$$

Thus

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{rrr}
2 & 0 & 1 \\
-2 & 3 & 4 \\
-5 & 5 & 6
\end{array}\right)^{-1}\left(\begin{array}{r}
2 \\
4 \\
-1
\end{array}\right)=\left(\begin{array}{rrr}
-2 & 5 & -3 \\
-8 & 17 & -10 \\
5 & -10 & 6
\end{array}\right)\left(\begin{array}{r}
2 \\
4 \\
-1
\end{array}\right)=\left(\begin{array}{r}
19 \\
62 \\
-36
\end{array}\right)
$$

Consequently, $x_{1}=19, x_{2}=62$, and $x_{3}=-36$.

In addition to the inverse matrix method shown above, there are two another widely used important methods:

1- Cramer's Rule

Let \mathbf{A} be the coefficient matrix of system (1). If $\operatorname{det} \mathbf{A} \neq 0$, then the solution of (1) is given by
$x_{1}=\frac{\operatorname{det} \mathbf{A}_{1}}{\operatorname{det} \mathbf{A}}, x_{2}=\frac{\operatorname{det} \mathbf{A}_{2}}{\operatorname{det} \mathbf{A}}, \ldots, x_{n}=\frac{\operatorname{det} \mathbf{A}_{n}}{\operatorname{det} \mathbf{A}}$
where $\mathrm{A}_{\mathrm{k}}, \mathrm{k}=1,2, \ldots, n$, is defined as:

$$
\mathbf{A}_{k}=\left[\begin{array}{cccccccc}
a_{11} & a_{12} & \ldots & a_{1 k-1} & b_{1} & a_{1} k+1 & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 k-1} & b_{2} & a_{2 k+1} & \ldots & a_{2 n} \\
\vdots & \vdots & & & \vdots & & & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n k-1} & b_{n} & a_{n k+1} & \ldots & a_{n n}
\end{array}\right]
$$

Example: Use Cramer's rule to solve the system

$$
\begin{aligned}
3 x_{1}+2 x_{2}+x_{3} & =7 \\
x_{1}-x_{2}+3 x_{3} & =3 \\
5 x_{1}+4 x_{2}-2 x_{3} & =1 .
\end{aligned}
$$

SOLUTION The solution requires the evaluation of four determinants:

$$
\begin{aligned}
& \operatorname{det} \mathbf{A}=\left|\begin{array}{rrr}
3 & 2 & 1 \\
1 & -1 & 3 \\
5 & 4 & -2
\end{array}\right|=13, \quad \operatorname{det} \mathbf{A}_{1}=\left|\begin{array}{rrr}
7 & 2 & 1 \\
3 & -1 & 3 \\
1 & 4 & -2
\end{array}\right|=-39, \\
& \operatorname{det} \mathbf{A}_{2}=\left|\begin{array}{rrr}
3 & 7 & 1 \\
1 & 3 & 3 \\
5 & 1 & -2
\end{array}\right|=78, \quad \operatorname{det} \mathbf{A}_{3}=\left|\begin{array}{rrr}
3 & 2 & 7 \\
1 & -1 & 3 \\
5 & 4 & 1
\end{array}\right|=52 .
\end{aligned}
$$

Thus, (6) gives

$$
x_{1}=\frac{\operatorname{det} \mathbf{A}_{1}}{\operatorname{det} \mathbf{A}}=-3, \quad x_{2}=\frac{\operatorname{det} \mathbf{A}_{2}}{\operatorname{det} \mathbf{A}}=6, \quad x_{3}=\frac{\operatorname{det} \mathbf{A}_{3}}{\operatorname{det} \mathbf{A}}=4 .
$$

2- Gaussian Elimination Method:

There are three types of elementary row operations which may be performed on the rows of a matrix:

1- Swap the positions of two rows.
2- Multiply a row by a non-zero scalar.
3- Add to one row a scalar multiple of another.
The solution is then found by the process called back-substitution.
Example: Solve the following linear system using Gaussian elimination:

$$
\begin{aligned}
2 x_{1}+6 x_{2}+x_{3} & =7 \\
x_{1}+2 x_{2}-x_{3} & =-1 \\
5 x_{1}+7 x_{2}-4 x_{3} & =9 .
\end{aligned}
$$

Solution: Using row operations on the augmented matrix of the system, we obtain:

$$
\begin{aligned}
& \left(\begin{array}{rrr|r}
2 & 6 & 1 & 7 \\
1 & 2 & -1 & -1 \\
5 & 7 & -4 & 9
\end{array}\right) \stackrel{\substack{R_{1} \leftrightarrow R_{2}}}{\Rightarrow}\left(\begin{array}{rrr|r}
1 & 2 & -1 & -1 \\
2 & 6 & 1 & 7 \\
5 & 7 & -4 & 9
\end{array}\right) \\
& \stackrel{\substack{-2 R_{1}+R_{2} \\
-5 R_{1}+R_{3}}}{\Rightarrow}\left(\begin{array}{rrr|r}
1 & 2 & -1 & -1 \\
0 & 2 & 3 & 9 \\
0 & -3 & 1 & 14
\end{array}\right) \stackrel{\frac{1}{2} R_{2}}{\stackrel{2}{2}}\left(\begin{array}{rrr|r}
1 & 2 & -1 & -1 \\
0 & 1 & \frac{3}{2} & \frac{9}{2} \\
0 & -3 & 1 & 14
\end{array}\right) \\
& \stackrel{3 R_{2}+R_{3}}{\Rightarrow}\left(\begin{array}{rrr|r}
1 & 2 & -1 & -1 \\
0 & 1 & \frac{3}{2} & \frac{9}{2} \\
0 & 0 & \frac{11}{2} & \frac{55}{2}
\end{array}\right) \stackrel{\frac{2}{\pi} R_{3}}{\Rightarrow}\left(\begin{array}{rrr|r}
1 & 2 & -1 & -1 \\
0 & 1 & \frac{3}{2} & \frac{9}{2} \\
0 & 0 & 1 & 5
\end{array}\right) .
\end{aligned}
$$

Substituting $x_{3}=5$ into the second equation gives $x_{2}=-3$. Substituting both these values back into the first equation finally yields $x_{1}=10$.

Home Works:

Exercises 8.2: Problems 1-20 (Only use Gaussian elimination).
Exercises 8.4: All Problems.
Exercises 8.5: 1-16.
Exercises 8.7: Problems 1-11.

