Unit one: Matrices

1.1 Basic Definitions:

A **matrix** is a rectangular array of numbers (or functions) enclosed in brackets. These numbers (or functions) are called the **entries** (or sometimes the *elements*) of the matrix. For example,

$$\begin{bmatrix} 0.3 & 1 & -5 \\ 0 & -0.2 & 16 \end{bmatrix}, \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}, \begin{bmatrix} e^{-x} & 2x^2 \\ e^{6x} & 4x \end{bmatrix}, [a_1 & a_2 & a_3], \begin{bmatrix} 4 \\ \frac{1}{2} \end{bmatrix}$$
(1)

The first matrix has two **rows** (horizontal lines of entries) and three **columns** (vertical lines). The second and third matrices are square matrices. Matrices having just a single row or column are called vectors. Thus the fourth and last matrices are called **row** and **column** vectors, respectively.

We shall denote matrices by capital letters A, B, C, ..., or $A = [a_{ij}]$

 $m \times n$ is called the size of the matrix.

 $\mathbf{A} \equiv [a_{ij}] = \begin{vmatrix} a_{11} & a_{12} & \cdots & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & \cdots & a_{2m} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & \cdots & a_{nm} \end{vmatrix}$

If m = n, we call **A** an $n \times n$ square matrix. A matrix that is not square is called a rectangular matrix.

1.2 Equality of Matrices:

Two matrices $\mathbf{A} = [a_{jk}]$ and $\mathbf{B} = [b_{jk}]$ are equal (written $\mathbf{A} = \mathbf{B}$) if and only if they have the same size, and the corresponding elements are equal, that is, $a_{11} = b_{11}$, $a_{12} = b_{12}$, and so on. Matrices that are not equal are called **different**.

Example: Equality of Matrices

Let

Then

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \quad \text{and} \quad \mathbf{B} = \begin{bmatrix} 4 & 0 \\ 3 & -1 \end{bmatrix}.$$
$$\mathbf{A} = \mathbf{B} \quad \text{if and only if} \quad \begin{aligned} a_{11} = 4, \quad a_{12} = 0, \\ a_{21} = 3, \quad a_{22} = -1. \end{aligned}$$

1.3 Addition of Matrices

The sum of two matrices $\mathbf{A} = [a_{ij}]$ and $\mathbf{B} = [b_{ij}]$ of the same size is written $\mathbf{A} + \mathbf{B}$ and has the entries $a_{ij}+b_{ij}$ obtained by adding the corresponding entries of \mathbf{A} and \mathbf{B} . Matrices of different sizes cannot be added.

Example:

If $\mathbf{A} = \begin{bmatrix} -4 & 6 & 3 \\ 0 & 1 & 2 \end{bmatrix}$ and $\mathbf{B} = \begin{bmatrix} 5 & -1 & 0 \\ 3 & 1 & 0 \end{bmatrix}$, then $\mathbf{A} + \mathbf{B} = \begin{bmatrix} 1 & 5 & 3 \\ 3 & 2 & 2 \end{bmatrix}$.

1.4 Scalar Multiplication (Multiplication by a Number)

The product of any $m \times n$ matrix $\mathbf{A} = [a_{ij}]$ and any scalar c (number c) is written $c\mathbf{A}$ and is the $m \times n$ matrix $c\mathbf{A} = [ca_{jk}]$ obtained by multiplying each entry of \mathbf{A} by \mathbf{c} .

Example:

If
$$\mathbf{A} = \begin{bmatrix} 2.7 & -1.8 \\ 0 & 0.9 \\ 9.0 & -4.5 \end{bmatrix}$$
, then $-\mathbf{A} = \begin{bmatrix} -2.7 & 1.8 \\ 0 & -0.9 \\ -9.0 & 4.5 \end{bmatrix}$, $\frac{10}{9}\mathbf{A} = \begin{bmatrix} 3 & -2 \\ 0 & 1 \\ 10 & -5 \end{bmatrix}$, $0\mathbf{A} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$.

Rules for Matrix Addition and Scalar Multiplication:

(a) A + B = B + A(b) (A + B) + C = A + (B + C)(c) A + 0 = A(d) A + (-A) = 0(a) c(A + B) = cA + cB(b) (c + k)A = cA + kA(c) c(kA) = (ck)A(d) IA = A

1.4 Matrix multiplication

The product $\mathbf{C} = \mathbf{A}\mathbf{B}$ (in this order) of an $m \times n$ matrix $\mathbf{A} = [a_{ij}]$ times an $r \times p$ matrix $\mathbf{B} = [b_{ij}]$ is defined if and only if r = n and is then the $m \times p$ matrix $\mathbf{C} = [c_{ij}]$ with entries

$$c_{ij} = \sum_{l=1}^{n} a_{il} b_{lj} = a_{i1} b_{1j} + a_{i2} b_{2j} + \dots + a_{in} b_{nj} \qquad i = 1, \dots, m$$
$$j = 1, \dots, p$$

 $\mathbf{A} \qquad \mathbf{B} = \mathbf{C}$ $[m \times n] \qquad [n \times p] \qquad [m \times p]$

Example:

$$\mathbf{AB} = \begin{bmatrix} 3 & 5 & -1 \\ 4 & 0 & 2 \\ -6 & -3 & 2 \end{bmatrix} \begin{bmatrix} 2 & -2 & 3 & 1 \\ 5 & 0 & 7 & 8 \\ 9 & -4 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 22 & -2 & 43 & 42 \\ 26 & -16 & 14 & 6 \\ -9 & 4 & -37 & -28 \end{bmatrix}$$

Here $c_{11} = 3 \cdot 2 + 5 \cdot 5 + (-1) \cdot 9 = 22$, and so on. The entry in the box is $c_{23} = 4 \cdot 3 + 0 \cdot 7 + 2 \cdot 1 = 14$. The product **BA** is not defined.

Note: Matrix Multiplication is Not Commutative, $AB \neq BA$ *in general.*

Rules of Matrix Multiplication:

- (a) $(k\mathbf{A})\mathbf{B} = k(\mathbf{A}\mathbf{B}) = \mathbf{A}(k\mathbf{B})$
- (b) $\mathbf{A}(\mathbf{B}\mathbf{C}) = (\mathbf{A}\mathbf{B})\mathbf{C}$
- (c) $(\mathbf{A} + \mathbf{B})\mathbf{C} = \mathbf{A}\mathbf{C} + \mathbf{B}\mathbf{C}$
- (d) $\mathbf{C}(\mathbf{A} + \mathbf{B}) = \mathbf{C}\mathbf{A} + \mathbf{C}\mathbf{B}$

1.5 Transpose of a Matrix

Given any $m \times n$ matrix $\mathbf{A} = [a_{ij}]$, we define the transpose of \mathbf{A} , denoted as \mathbf{A}^{T} and read as "**A**-transpose" as

$$\mathbf{A}^{\mathrm{T}} = [a_{ij}]^{\mathrm{T}} = [a_{ji}] = \begin{bmatrix} a_{11} & a_{21} & \cdots & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{1n} & a_{2n} & \cdots & \cdots & \vdots & a_{mn} \end{bmatrix}$$

Example:
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$$

1.6 Types of Matrices:

Type of Matrix	Details	Example				
Row Matrix	$\mathbf{A} = [a_{ij}]_{1 \times n}$	[0 1 1 -2]				
Column Matrix	$\mathbf{A} = [a_{ij}]_{m \times 1}$	$\begin{bmatrix} -1\\ 2\\ -4\\ 5\end{bmatrix}$				
Zero or Null Matrix	$\mathbf{A} = [a_{ij}]_{m \times n}$ where, $a_{ij} = 0$	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$				
Singleton Matrix	$\mathbf{A} = [a_{ij}]_{m \times n}$ where, $m = n = 1$	[2]				
Horizontal Matrix	$[a_{ij}]_{m \times n}$ where $n > m$	$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 1 & 1 \end{bmatrix}$				
Vertical Matrix	$[a_{ij}]_{m \times n}$ where, $m > n$	$\begin{bmatrix} 2 & 5 \\ 1 & 1 \\ 3 & 6 \\ 2 & 4 \end{bmatrix}$				
Square Matrix	$[a_{ij}]_{m \times n}$ where, $m = n$	$\begin{bmatrix} 4 & 7 \\ 9 & 13 \end{bmatrix}$				
Diagonal Matrix	$\mathbf{A} = [a_{ij}]$, $a_{ij} = 0$, when $i \neq j$	$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}$				
Identity (Unit) Matrix (I)	$\mathbf{A} = [a_{ij}]_{m imes n} ext{ where,} \ a_{ij} = egin{cases} 1, & i=j \ 0, & i eq j \end{cases}$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$				
Triangular Matrix	Can be either upper triangular $(a_{ij} = 0, \text{ when } i > j) \text{ or lower}$ triangular $(a_{ij} = 0 \text{ when } i < j)$	$\begin{bmatrix} 3 & 1 & 2 \\ 0 & 4 & 3 \\ 0 & 0 & 6 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 4 & 5 & 2 \end{bmatrix}$ Upper Matrix Lower Matrix				
Singular Matrix	$ \mathbf{A} = 0$					
Non-Singular Matrix	$ \mathbf{A} \neq 0$					
Symmetric Matrix	$\mathbf{A} = [a_{ij}] \text{ where, } a_{ij} = a_{ji}$ or $\mathbf{A} = \mathbf{A}^{\mathrm{T}}$ (A is a square matrix)	$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 2 \end{pmatrix}$				
Skew-Symmetric Matrix	$\mathbf{A} = [a_{ij}] \text{ where, } a_{ij} = -a_{ji}$ or $\mathbf{A} = -\mathbf{A}^{\mathrm{T}}$ (A is a square matrix)	$\begin{bmatrix} 0 & 2 & 1 \\ -2 & 0 & -3 \\ -1 & 3 & 0 \end{bmatrix}$				

1.7 Determinants

The scalar quantity associated with a square matrix, is called "determinant". We denote the determinant of an $n \times n$ matrix $\mathbf{A} = [a_{ij}]$ as

$$\det \mathbf{A} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \sum_{j=1}^{n} a_{ij} C_{ij}$$

$$|\mathbf{A}| = a_{i1} A_{i1} + a_{i2} A_{i2} + \dots + a_{in} A_{in} = \sum_{j=1}^{n} a_{ij} C_{ij} \quad \text{(row definition)}$$

$$|\mathbf{A}| = a_{1j} A_{1j} + a_{2j} A_{2j} + \dots + a_{nj} A_{nj} = \sum_{i=1}^{n} a_{ij} C_{ij} \quad \text{(column definition)}$$

where C_{ij} is called the cofactor of the a_{ij} element and is defined as

$$C_{ij} \equiv (-1)^{i+j} \operatorname{M}_{ij}$$

where M_{ij} is called the minor of a_{ij} , namely the determinant of $(n-1) \times (n-1)$ matrix that survives when the row and column containing a_{ij} are struck out.

Special Cases in Determinants:

1- Determinant of order 1: The determinant of a matrix of the first order (*n*=1) is the element itself.

Example: If A = [-1], then detA = -1.

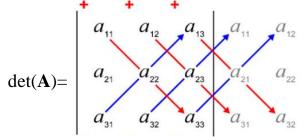
2- Determinant of order 2:

$$det \begin{bmatrix} a & c \\ b & d \end{bmatrix} = (a)(d) - (b)(c)$$
$$det \begin{bmatrix} 3 & 5 \\ 4 & 6 \end{bmatrix} = (3)(6) - (4)(5) = 18 - 20 = -2$$

3- Determinant of order 3:(a) The Leibniz formula:

$$egin{array}{ccc} a & b & c \ d & e & f \ g & h & i \end{array} = a(ei-fh) - b(di-fg) + c(dh-eg) \ = aei + bfg + cdh - ceg - bdi - afh.$$

(b) The rule of Sarrus:



 $\det(\mathbf{A}) = a_{11} a_{22} a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{31}a_{22}a_{13} - a_{32}a_{23}a_{11} - a_{33}a_{21}a_{12}$

Notes:

- i. The scheme of Sarrus for calculating the determinant of a 3×3 matrix does not carry over into higher dimensions.
- ii. The Leibniz formula expresses the determinant of an $n \times n$ -matrix in a manner which is consistent across higher dimensions.
 - 4- If the matrix is upper or lower triangular matrix, the determinant of the matrix is the product of the elements on the main diagonal.

Some Properties of determinants:

1- If any row or column of a determinant det**A** only contains zero elements, then det $\mathbf{A} = 0$.

2- If **A** is a square matrix with the transpose \mathbf{A}^{T} , then det $\mathbf{A} = \det \mathbf{A}^{\mathrm{T}}$.

3- If each element of a row or column of a square matrix A is multiplied by a

constant k, then the value of the determinant is kdet**A**.

4- If two rows (or columns) of a square matrix are interchanged, the sign of the determinant is changed.

5- If any two rows or columns of a square matrix \mathbf{A} are proportional, then $\det \mathbf{A} = 0$.

Example 1: Evaluate the determinant of the given matrix by cofactor expansion.

 $\begin{pmatrix} 2 & 1 & -2 & 1 \\ 0 & 5 & 0 & 4 \\ 1 & 6 & 1 & 0 \\ 5 & -1 & 1 & 1 \end{pmatrix}$ Solution: $|\mathbf{A}| = \begin{vmatrix} 2 & 1 & -2 & 1 \\ 0 & 5 & 0 & 4 \\ 1 & 6 & 1 & 0 \\ 5 & -1 & 1 & 1 \end{vmatrix} = 5 \begin{vmatrix} 2 & -2 & 1 \\ 1 & 1 & 0 \\ 5 & 1 & 1 \end{vmatrix} + 4 \begin{vmatrix} 2 & 1 & -2 \\ 1 & 6 & 1 \\ 5 & -1 & 1 \end{vmatrix} = 5(0) + 4(80) = 320$

Example 2: Explain the following results:

1	2	3	4			6				1		
2	5	7	$\begin{vmatrix} 3 \\ 6 \end{vmatrix} = 0,$	4	7	3	2	0 and	6	7	6	9
4	10	14	6 = 0,	0	0	0	0 = 0		0	6	0	0 = 0
3	4	2	7				9			2		

1.8 Matrix Partitioning:

The idea of matrix partitioning is that any matrix **A** (which is larger than 1×1) may be portioned into a number of smaller matrices called *blocks*.

Example: The matrix

$$A = \begin{bmatrix} 3 & 0 & -1 & 5 & 9 & -2 \\ -5 & 2 & 4 & 0 & -3 & 1 \\ -8 & -6 & 3 & 1 & 7 & -4 \end{bmatrix}$$

Can also be written as the 2 × 3 partitioned (or block) matrix

$$A = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \end{bmatrix}$$

• Whose entries are the *blocks* (or *submatrices*)

$$A_{11} = \begin{bmatrix} 3 & 0 & -1 \\ -5 & 2 & 4 \end{bmatrix}, \quad A_{12} = \begin{bmatrix} 5 & 9 \\ 0 & -3 \end{bmatrix}, \quad A_{13} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$
$$A_{21} = \begin{bmatrix} -8 & -6 & 3 \end{bmatrix}, \quad A_{22} = \begin{bmatrix} 1 & 7 \end{bmatrix}, \quad A_{23} = \begin{bmatrix} -4 \end{bmatrix}$$

Example : Find AB, where

$$A = \begin{bmatrix} 2 & -3 & 1 & 0 & -4 \\ 1 & 5 & -2 & 3 & -1 \\ 0 & -4 & -2 & 7 & -1 \end{bmatrix} , B = \begin{bmatrix} 6 & 4 \\ -2 & 1 \\ -3 & 7 \\ -1 & 3 \\ 5 & 2 \end{bmatrix}$$

Solution:

$$A = \begin{bmatrix} 2 & -3 & 1 & | & 0 & -4 \\ 1 & 5 & -2 & 3 & -1 \\ \hline 0 & -4 & -2 & | & 7 & -1 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, B = \begin{bmatrix} 0 & 4 \\ -2 & 1 \\ \hline -3 & 7 \\ \hline -1 & 3 \\ 5 & 2 \end{bmatrix} = \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}$$
$$AB = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} = \begin{bmatrix} A_{11}B_1 + A_{12}B_2 \\ A_{21}B_1 + A_{22}B_2 \end{bmatrix}$$
$$= \begin{bmatrix} -5 & 4 \\ -6 & 2 \\ \hline 2 & 1 \end{bmatrix}$$

Γ6 *1*]

1.9 Inverse of a Matrix

If **A** is a non-singular square matrix, there is an existence of $n \times n$ matrix **A**⁻¹, which is called the inverse matrix of **A**, such that it satisfies the property:

$$\mathbf{A}^{-1} = \frac{1}{A}$$
 and $\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$

where **I** is the Identity matrix. The inverse of a nonsingular $n \times n$ matrix $\mathbf{A} = [a_{ij}]$ is:

$$\mathbf{A}^{-1} = \frac{1}{|A|} \begin{bmatrix} C_{ij} \end{bmatrix}^T = \frac{1}{|A|} \begin{bmatrix} c_{11} & c_{21} & \dots & c_{n1} \\ c_{12} & c_{22} & \dots & c_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ c_{1n} & c_{2n} & \dots & c_{nn} \end{bmatrix} = \frac{\operatorname{adj}(A)}{|A|}$$

where $[C_{ij}]^T$ is the transpose of cofactors matrix of **A**, $adj(\mathbf{A})$ is the adjoint matrix of **A**.

Properties of the Inverse:

Let A and B be nonsingular matrices. Then

- (i) $(\mathbf{A}^{-1})^{-1} = \mathbf{A}$
- (ii) $(AB)^{-1} = B^{-1}A^{-1}$
- (iii) $(\mathbf{A}^T)^{-1} = (\mathbf{A}^{-1})^T$

Example: Find the inverse of $\mathbf{A} = \begin{pmatrix} 2 & 2 & 0 \\ -2 & 1 & 1 \\ 3 & 0 & 1 \end{pmatrix}$.

SOLUTION Since det A = 12, we can find A^{-1} from (5). The cofactors corresponding to the entries in A are

$$C_{11} = \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} = 1 \qquad C_{12} = -\begin{vmatrix} -2 & 1 \\ 3 & 1 \end{vmatrix} = 5 \qquad C_{13} = \begin{vmatrix} -2 & 1 \\ 3 & 0 \end{vmatrix} = -3$$
$$C_{21} = -\begin{vmatrix} 2 & 0 \\ 0 & 1 \end{vmatrix} = -2 \qquad C_{22} = \begin{vmatrix} 2 & 0 \\ 3 & 1 \end{vmatrix} = 2 \qquad C_{23} = -\begin{vmatrix} 2 & 2 \\ 3 & 0 \end{vmatrix} = 6$$
$$C_{31} = \begin{vmatrix} 2 & 0 \\ 1 & 1 \end{vmatrix} = 2 \qquad C_{32} = -\begin{vmatrix} 2 & 0 \\ -2 & 1 \end{vmatrix} = -2 \qquad C_{33} = \begin{vmatrix} 2 & 2 \\ -2 & 1 \end{vmatrix} = 6.$$

From (5) we then obtain

$$\mathbf{A}^{-1} = \frac{1}{12} \begin{pmatrix} 1 & -2 & 2\\ 5 & 2 & -2\\ -3 & 6 & 6 \end{pmatrix} = \begin{pmatrix} \frac{1}{12} & -\frac{1}{6} & \frac{1}{6}\\ \frac{5}{12} & \frac{1}{6} & -\frac{1}{6}\\ -\frac{1}{4} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}.$$

1.10 Solution of linear simultaneous equations:

A system of *m* linear equations in *n* variables $x_1, x_2, ..., x_n$,

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$
(1)

 $a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m$

can be written completely as a matrix **AX=B**, where

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_n \end{bmatrix}, \qquad \mathbf{B} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ \vdots \\ b_m \end{bmatrix}$$

Let us suppose that m = n in the equation above, so that the coefficient matrix **A** is $n \times n$. In particular, if **A** is nonsingular, then the system $\mathbf{AX} = \mathbf{B}$ can be solved by:

$$\mathbf{X} = \mathbf{A}^{-1} \mathbf{B}$$

Where **X** is variable matrix, **A** coefficients matrix and **B** constant matrix. (Note: if det **A**=0, the system of linear equations is called **inconsistent**, i.e. there is no unique solution).

Example: Use the inverse of the coefficient matrix to solve the system

$$2x_1 + x_3 = 2$$

-2x₁ + 3x₂ + 4x₃ = 4
-5x₁ + 5x₂ + 6x₃ = -1

Solution:

$$\mathbf{A}^{-1} = \begin{pmatrix} -2 & 5 & -3 \\ -8 & 17 & -10 \\ 5 & -10 & 6 \end{pmatrix} \qquad (Home \ work \ !)$$

Thus

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 1 \\ -2 & 3 & 4 \\ -5 & 5 & 6 \end{pmatrix}^{-1} \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix} = \begin{pmatrix} -2 & 5 & -3 \\ -8 & 17 & -10 \\ 5 & -10 & 6 \end{pmatrix} \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix} = \begin{pmatrix} 19 \\ 62 \\ -36 \end{pmatrix}$$

Consequently, $x_1 = 19$, $x_2 = 62$, and $x_3 = -36$.

In addition to the *inverse matrix* method shown above, there are two another widely used important methods:

1-Cramer's Rule

Let **A** be the coefficient matrix of system (1). If det $\mathbf{A} \neq 0$, then the solution of (1) is given by

$$x_1 = \frac{\det A_1}{\det A}$$
, $x_2 = \frac{\det A_2}{\det A}$, ..., $x_n = \frac{\det A_n}{\det A}$

where A_k , k = 1, 2, ..., n, is defined as:

$$\mathbf{A}_{k} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1 \ k-1} & b_{1} & a_{1 \ k+1} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2 \ k-1} & b_{2} & a_{2 \ k+1} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{n \ k-1} & b_{n} & a_{n \ k+1} & \dots & a_{nn} \end{bmatrix}$$

Example: Use Cramer's rule to solve the system

$$3x_1 + 2x_2 + x_3 = 7$$

$$x_1 - x_2 + 3x_3 = 3$$

$$5x_1 + 4x_2 - 2x_3 = 1.$$

SOLUTION The solution requires the evaluation of four determinants:

$$\det \mathbf{A} = \begin{vmatrix} 3 & 2 & 1 \\ 1 & -1 & 3 \\ 5 & 4 & -2 \end{vmatrix} = 13, \qquad \det \mathbf{A}_1 = \begin{vmatrix} 7 & 2 & 1 \\ 3 & -1 & 3 \\ 1 & 4 & -2 \end{vmatrix} = -39,$$
$$\det \mathbf{A}_2 = \begin{vmatrix} 3 & 7 & 1 \\ 1 & 3 & 3 \\ 5 & 1 & -2 \end{vmatrix} = 78, \qquad \det \mathbf{A}_3 = \begin{vmatrix} 3 & 2 & 7 \\ 1 & -1 & 3 \\ 5 & 4 & 1 \end{vmatrix} = 52.$$

Thus, (6) gives

$$x_1 = \frac{\det \mathbf{A}_1}{\det \mathbf{A}} = -3, \quad x_2 = \frac{\det \mathbf{A}_2}{\det \mathbf{A}} = 6, \quad x_3 = \frac{\det \mathbf{A}_3}{\det \mathbf{A}} = 4.$$

2- Gaussian Elimination Method:

There are three types of elementary row operations which may be performed on the rows of a matrix:

- 1- Swap the positions of two rows.
- 2- Multiply a row by a non-zero scalar.
- 3- Add to one row a scalar multiple of another.

The solution is then found by the process called **back-substitution**.

Example: Solve the following linear system using Gaussian elimination:

$$2x_1 + 6x_2 + x_3 = 7$$

$$x_1 + 2x_2 - x_3 = -1$$

$$5x_1 + 7x_2 - 4x_3 = 9.$$

Solution: Using row operations on the augmented matrix of the system, we obtain:

$$\begin{pmatrix} 2 & 6 & 1 & | & 7 \\ 1 & 2 & -1 & | & -1 \\ 5 & 7 & -4 & | & 9 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{pmatrix} 1 & 2 & -1 & | & -1 \\ 2 & 6 & 1 & | & 7 \\ 5 & 7 & -4 & | & 9 \end{pmatrix}$$

$$\xrightarrow{-2R_1 + R_2} = \begin{pmatrix} 1 & 2 & -1 & | & -1 \\ 0 & 2 & 3 & | & 9 \\ 0 & -3 & 1 & | & 14 \end{pmatrix} \xrightarrow{\frac{1}{2}R_2} = \begin{pmatrix} 1 & 2 & -1 & | & -1 \\ 0 & 1 & \frac{3}{2} & | & \frac{9}{2} \\ 0 & -3 & 1 & | & 14 \end{pmatrix} \xrightarrow{\frac{1}{2}R_2} = \begin{pmatrix} 1 & 2 & -1 & | & -1 \\ 0 & 1 & \frac{3}{2} & | & \frac{9}{2} \\ 0 & -3 & 1 & | & 14 \end{pmatrix} \xrightarrow{\frac{3}{2}R_2 + R_3} = \begin{pmatrix} 1 & 2 & -1 & | & -1 \\ 0 & 1 & \frac{3}{2} & | & \frac{9}{2} \\ 0 & 0 & \frac{11}{2} & | & \frac{9}{2} \\ \frac{55}{2} & \xrightarrow{\frac{21}{11}R_3} & \begin{pmatrix} 1 & 2 & -1 & | & -1 \\ 0 & 1 & \frac{3}{2} & | & \frac{9}{2} \\ 0 & 0 & 1 & | & 5 \end{pmatrix}.$$

Substituting $x_3 = 5$ into the second equation gives $x_2 = -3$. Substituting both these values back into the first equation finally yields $x_1 = 10$.

Home Works:

Exercises 8.2: Problems 1-20 (Only use Gaussian elimination).

Exercises 8.4: All Problems.

Exercises 8.5: 1-16.

Exercises 8.7: Problems 1-11.